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Polymer supported manganese was synthesized via a tem-
plate polymerization involving functional monomers to
afford a catalyst with superoxide dismutase activity.

Template-directed synthesis of designed molecules has at-
tracted increasing interest due to its inherent simplicity. This
strategy has been adopted both in supramolecular chemistry1

and in molecular imprinting of synthetic polymers.2 In the latter
practice a molecular template is used to generate specific
binding sites in cross-linked polymers, in which the distribution
of functional groups is dictated by the template molecule. When
metal ions are used as templates, they are able to bring
appropriately oriented coordination groups into a multi-dentate
structure that affords selective binding capability of the polymer
towards the metal ion templates.3 In addition to studying metal
ion binding polymers, we have been interested in exploiting the
resulting polymers for biotechnological applications, for exam-
ple as enzyme mimics able to catalyze important biochemical
reactions. It is now common knowledge that the catalytic
activity of many metalloenzymes depends to a large extent on a
correctly co-ordinated metal co-factor located in their active
center. For instance, the manganese-based superoxide dis-
mutase (Mn SOD) from human mitochondria contains a Mn(II)
coordination sphere and is able to catalyze the disproportiona-
tion of superoxide anions (O2·2), an important mechanism in
healthy organisms to suppress accumulation of highly reactive
superoxide radicals (Scheme 1a).4

Synthetic SOD mimics have pharmaceutical potential in
treating tissue injury and inflammation.5 Up to now most SOD
mimics have been based on small organic molecules obtained
by multi-step synthesis. To investigate the feasibility of
building polymer-based metalloenzyme mimics, we started to
use the Mn(II) ion itself to assemble a similar coordination
sphere in cross-linked polymer matrices. We used 4-vinylimida-
zole (4V), 1-vinylimidazole (1V) and methacrylic acid (MAA)
to produce the necessary Mn(II) binding interactions (Table 1),
based on the assumption that these monomers have functional
groups similar to those of histidine and aspartic acid, the amino
acid residues that form the active metal complex with Mn(II) in
the native enzyme. The polymers containing Mn(II) were
prepared by a free radical polymerization using excess of a
cross-linking monomer, ethyleneglycol dimethylacrylate
(EDMA).6 The SOD activity of the polymers was assayed by
measuring inhibition of the photoreduction of nitro blue
tetrazolium (NBT) (Scheme 1b), a method slightly modified
from that originally described by Beyer and Fridovich.7 This
indirect assay comprised several reactions: The photochem-
ically excited riboflavin was first reduced by methionine into a
semiquinone, which donated an electron to oxygen to form the
superoxide source. The superoxide readily converted NBT into
a purple formazan product. In this way the SOD activity was
inversely related to the amount of formazan formed. In our
heterogeneous system, we used a metal-free, non-templated
polymer as a control to give a background visible absorbance
value.

As seen in Table 1, the Mn(II)-containing polymer based on
4-vinylimidazole and methacrylic acid (Mn-P4VM) was able to
scavenge the photo-chemically generated superoxide anions,
which otherwise could reduce NBT to form a light absorbing
formazan. A pre-treatment of the polymer with ethylenediamine
tetracetic acid (EDTA) stripped the polymer of Mn(II), which

Scheme 1 (a) Coordination sphere in Mn SOD and the enzyme catalyzed
disproportionation of superoxide radicals. (b) SOD activity assay by
measuring the inhibition of the photoreduction of nitro blue tetrazolium
(NBT).

Table 1 Preparation of polymer supported Mn(II) catalysts and their SOD
activity

Functional monomer/µmol

No.a Polymer
Mn(II)/
µmol 1V 4V MAA

SOD
activityb

(%)

1 Mn-P4VM 100 0 300 100 72
2 P4VMc 0 0 300 100 0
3 Mn-P1VM 100 300 0 100 89
4 P1VM 0 300 0 100 0
5 Mn-P1V 100 400 0 0 48
6 P1V 0 400 0 0 0
7 Mn-PM 100 0 0 400 62
8 PM 0 0 0 400 0
a Entries 1, 3, 5 and 7 were for templated polymers. Entries 2, 4, 6 and 8
were for non-templated polymers. b SOD activity was evaluated by the
extent of inhibition of the NBT photoreduction.8 c Neither P4VM, nor
P4VM pre-loaded with excess Mn(II) showed any SOD activity.10
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resulted in a complete loss of SOD activity.9 This control
experiment confirmed that catalysis of superoxide disproportio-
nation was caused by the metal center. However, simply pre-
loading the metal-free polymer (P4VM) with excess MnCl2 did
not afford any SOD activity10 and free Mn(II) in solution only
displayed a very low intrinsic SOD activity.11 Thus it is only
metal templated polymer (Mn-P4VM) that produces an en-
hanced catalytic activity.

Interestingly, when 1-vinylimidazole was used together with
methacrylic acid, the resulting metal containing polymer Mn-
P1VM showed much higher activity than Mn-P4VM. This may
be explained by the fact that in the natural enzyme system, the
metal center is coordinated to histidine residues via the
“pyridine nitrogen” (N-3),12 which is better simulated by
1-vinylimidazole. To test the importance of the metal center, we
also prepared polymers containing other metal ions [Co(II),
Fe(III) and Cu(II)] using the same monomer composition as that
for Mn-P1VM. When these polymers were assayed, they
displayed a decreasing SOD activity in the order of Co(II) (77%)
> Cu(II) (55%) > Fe(III) (10%). Catalytic activity of the
polymer supported Cu(II) is very low, as compared to that of the
mammalian Cu/Zn SOD (almost diffusion-controlled). For the
Cu/Zn SOD, a key step in the catalytic reaction is breakage of
the imidazole bridge between copper and zinc.13 This important
feature is missing in the polymer supported Cu(II) catalyst.

Our Mn(II)-containing polymer was designed to mimic the
coordination center in the native Mn SOD enzyme. The Mn(II)
in the polymer was supposed to coordinate with three imidazole
and one carboxyl group to maintain catalytic activity. Omitting
one of the functional monomers (Mn-P1V and Mn-PM,
respectively) resulted in a reduced SOD activity (Table 1).

By varying the amount of polymers used in the assay, we
found that approximately 1.2 mg of both Mn-P4VM and Mn-
P1VM were needed in order to inhibit 50% of the NBT
photoreduction (Fig. 1), which corresponded to 3.7 units of the
native SOD enzyme.14 Repeated use of Mn-P1VM resulted in a
reduction of activity, i.e. the inhibition of NBT photoreduction
decreased from the initial 89% to 79%, which was accompanied
by a lowered amount of Mn(II) in the polymer (by 70%) as
quantified by ICP-AES analysis. It appeared that among the
initial Mn(II) used for polymer preparation, less than 30% were
able to form a stable complex with the ligand monomers
throughout the polymerisation process, and remained relatively
stable in the obtained Mn-P1VM. Further investigation is
needed in order to improve the complex stability during
polymer preparation, as well as in the obtained polymer
supported Mn(II) catalyst.

In summary, we have demonstrated a simple template
polymerisation method for the preparation of a polymer
supported Mn(II) catalyst that displays favourable SOD activity.
By exploiting more sophisticated functional monomers and
polymerisation conditions, we expect to greatly improve
catalyst stability and activity in the future.
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Fig. 1 Inhibition of photoreduction of NBT by increasing the amount of
polymer used in the assay. Mn-P4VM (-) and Mn-P1VM (:).
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